Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.139
Filtrar
1.
PLoS One ; 19(4): e0292206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564644

RESUMO

Collection and cooking of wild vegetables have provided seasonal enjoyments for Japanese local people as provisioning and cultural ecosystem services. However, the Fukushima Daiichi Nuclear Power Plant accident in March 2011 caused extensive radiocesium contamination of wild vegetables. Restrictions on commercial shipments of wild vegetables have been in place for the last 10 years. Some species, including buds of Aralia elata, are currently showing radiocesium concentrations both above and below the Japanese reference level for food (100 Bq/kg), implying that there are factors decreasing and increasing the 137Cs concentration. Here, we evaluated easy-to-measure environmental variables (dose rate at the soil surface, organic soil layer thickness, slope steepness, and presence/absence of decontamination practices) and the 137Cs concentrations of 40 A. elata buds at 38 locations in Fukushima Prefecture to provide helpful information on avoiding collecting highly contaminated buds. The 137Cs concentrations in A. elata buds ranged from 1 to 6,280 Bq/kg fresh weight and increased significantly with increases in the dose rate at the soil surface (0.10-6.50 µSv/h). Meanwhile, the 137Cs concentration in A. elata buds were not reduced by decontamination practices. These findings suggest that measuring the latest dose rate at the soil surface at the base of A. elata plants is a helpful way to avoid collecting buds with higher 137Cs concentrations and aid in the management of species in polluted regions.


Assuntos
Aralia , Acidente Nuclear de Fukushima , Isoflavonas , Monitoramento de Radiação , Poluentes Radioativos do Solo , Humanos , Verduras , Radioisótopos de Césio/análise , Ecossistema , Poluentes Radioativos do Solo/análise , Solo , Proteínas de Soja , Japão
2.
PLoS One ; 19(4): e0297017, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573885

RESUMO

This article presents research findings on 3H in abiotic environmental compartments, specifically, the 'water-soil-air' system. All of the research areas are located within the Semipalatinsk Test Site (STS): the perimeter of the 'Degelen' site, the riverside zone of the Shagan river and the 'background' area-the southeastern part of the STS (SEP). As research progressed, numerical values of 3H and its species were revealed in various environmental compartments. The presence of 3H was registered not only in underground nuclear test locations but also in the 'background' area-SEP. Maximum 3H tritium concentrations in the water were detected at the 'Degelen' site (up to 57000±5000 Bq/kg) and the Shagan riv (up to 61500±6000 Bq/kg), in the air of the 'Degelen' site (up to 56±11 Bq/m3), in the soil of the 'Degelen' site (up to 5170±500 Bq/kg) and the Shagan riv (4100±400 Bq/kg) in the free water, at SEP (up to 1710±170 Bq/kg) in the organic constituent. Based upon all of the findings, 3H was found to be readily distributed in abiotic environmental compartments depending on certain conditions. Research suggests that water plays a key role in 3H migration processes in the natural system of interest. The second most but equally important constituent is soil and microorganisms of plant and animal origin living there. These assumptions are indirectly proven by research findings that show the HTO and HT air concentration dynamics depending on the sampling location.


Assuntos
Monitoramento de Radiação , Poluentes Radioativos do Solo , Animais , Trítio , Água , Solo , Rios , Poluentes Radioativos do Solo/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-38541314

RESUMO

This article reports the results of an investigation into the activity concentration of natural radionuclides in raw building materials for underground parking lots, together with the assessment of the radiation hazard for the public related to exposure to ionizing radiations. To this purpose, high-purity germanium (HPGe) γ-ray spectrometry was employed in order to quantify the average specific activity of 226Ra, 232Th, and 40K natural radioisotopes. With the aim to assess any possible radiological health risk for the population, the absorbed γ-dose rate (D), the annual effective dose equivalent outdoor (AEDEout) and indoor (AEDEin), the activity concentration index (I), and the alpha index (Iα) were also estimated, resulting in values that were lower than the maximum recommended ones for humans. Finally, the extent of the correlations existing between the observed radioactivity and radiological parameters and of these parameters with the analyzed samples was quantified through statistical analyses, including Pearson's correlation, a principal component analysis (PCA), and a hierarchical cluster analysis (HCA). As a result, three clusters of the investigated samples were recognized based on their chemical composition and mineralogical nature. Noteworthily, this paper covers a certain gap in science since its topic does not appear in literature in this form. Thus, the authors underline the importance of this work to global knowledge in the environmental research and public health fields.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Humanos , Monitoramento de Radiação/métodos , Radioisótopos/análise , Saúde Radiológica , Espectrometria gama , Materiais de Construção/análise , Tório/análise , Radioisótopos de Potássio/análise , Rádio (Elemento)/análise , Poluentes Radioativos do Solo/análise
4.
Appl Radiat Isot ; 207: 111266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461629

RESUMO

Brazil is the fourth largest cement consumer in the world and the largest producer in Latin America, around 1.3% of global production. The main inputs in the manufacture of cement are limestone and clay. Few studies have been carried out in the country on the risk of these materials used in civil construction. Therefore, the objective of this present work is to evaluate the radiological danger that they can present to society. Gamma spectrometry analysis on 16 samples of different brands of cement used as construction material in Rio de Janeiro (Brazil) was performed in this study, using an HPGe detector and the Genie 2000 data acquisition software. Samples were set to count for an accumulation time of 14,400 s (4 h) and all measurements were corrected to eliminate background and backscattering. Activity concentrations are determined for 226Ra was from (41.2 ± 1.6 to 174.9 ± 3.9) Bq kg-1, 232Th was from (15.7 ± 0.5 to 43.1 ± 0.7) Bq kg-1 and 40K was from (82.6 ± 7.2 to 254 ± 17) Bq kg-1. To assess radiological health risks: mean values of Radium Activity Equivalent 150.0 ± 3.4 Bq kg-1, Annual Gonadal Dose Equivalent 468 ± 11 µSv year-1 and Lifetime Excess Cancer Risk (ELCR) 2.42 ± 0.06 were calculated. Total Absorbed Dose Rates ranged from 72.2 ± 1.7 to 225.1 ± 5.2 nGy h-1. The damage to collective health was also estimated from the annual effective dose rates with an estimated total cost of damage to health of US$ 130 million. Values are generally within global limits reported by UNSCEAR.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Radioisótopos de Potássio/análise , Tório/análise , Monitoramento de Radiação/métodos , Brasil , Materiais de Construção/análise , Rádio (Elemento)/análise , Poluentes Radioativos do Solo/análise , Espectrometria gama
5.
Environ Monit Assess ; 196(3): 330, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427152

RESUMO

The Kanyakumari coast is known to be a high background natural radiation area due to the placer deposits of heavy minerals such as ilmenite, monazite, and rutile. The Kanyakumari river sediments that could be the source of the elevated amounts of natural radionuclides in the coastal sands have been studied in this paper. The activity concentrations of primordial radionuclides 226Ra, 232Th, and 40K were determined using high-purity germanium (HPGe) gamma-ray spectrometry. The mean activity concentrations of 226Ra, 232Th, and 40K were found to be 75 Bq kg-1, 565 Bq kg-1, and 360 Bq kg-1, respectively. The mean absorbed dose rate was 395 nGy h-1. Radiological hazard parameters were studied and compared with the world average values. The contribution of 232Th to the total dose rate was found to be higher than that of the two other radionuclides. The high mean ratio of 232Th/226Ra suggested an enrichment of 232Th and the occurrence of 226Ra leaching due to an oxidizing environment. Principal component analysis (PCA) was carried out for the radionuclides in order to discriminate the source of the sediments. This study provides new insights into the distribution of natural radionuclides in sediments of rivers and streams.


Assuntos
Monitoramento de Radiação , Poluentes Radioativos do Solo , Rios , Radiação de Fundo , Monitoramento Ambiental , Tório/análise , Radioisótopos/análise , Poluentes Radioativos do Solo/análise , Índia , Medição de Risco , Monitoramento de Radiação/métodos , Radioisótopos de Potássio/análise
6.
Environ Sci Pollut Res Int ; 31(17): 24951-24960, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460038

RESUMO

Solid process fine waste or tailings of a uranium mill is a potential source of release of radiologically significant gaseous radon (222Rn). A number of variables such as radium (226Ra) content, porosity, moisture content, and tailings density can affect the extent of emanation from the tailings. Further, if a cover material is used for remediation purposes, additional challenges due to changes in the matrix characteristics in predicting the radon flux can be anticipated. The uranium mill tailings impoundment systems at Jaduguda have been in use for the long-term storage of fine process waste (tailings). A pilot-scale remediation exercise of one of the tailings ponds has been undertaken with 30 cm soil as a cover material. For the prediction of the radon flux, a numerical model has been developed to account for the radon exhalation process at the remediated site. The model can effectively be used to accommodate both the continuous and discrete variable inputs. Depth profiling and physicochemical characterization for the remediated site have been done for the required input variables of the proposed numerical model. The predicted flux worked out is well below the reference level of 0.74 Bq m-2 s-1 IAEA (2004).


Assuntos
Rádio (Elemento) , Radônio , Poluentes Radioativos do Solo , Urânio , Radônio/análise , Poluentes Radioativos do Solo/análise , Índia , Resíduos Sólidos
7.
J Environ Manage ; 356: 120675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493642

RESUMO

Radon (222Rn) is a radioactive gas that occurs naturally in the soil and is harmful to the environment and health. However, the measuring the amount of radon flowing is challenging. This study reveals the mechanism responsible for radon transportation and concentration variation, the main driving forces acting, and the key factors operating in the vadose zone. In this study, two separate holes were used to monitor the amount of earth-air and radon flowing in and out of the soil in the extremely arid region in China where the Mogao Grottoes are located. Using a closed-system model, the quantity, characteristics, and regularity of the flow of earth-air and radon were thus determined on daily and yearly timescales. The same patterns of variation in earth-air flow and radon concentration were found at the two sites, both depending on the variation in the atmospheric pressure (AP). When the AP decreases, earth-air flows out from the soil with a high radon concentration. Conversely, when the AP increases, earth-air enters into the soil with a low radon concentration. Thus, radon is continuously emitted from the soil. The concentration of radon in the earth-air is proportional to the rate of flow of earth-air and therefore increases as the AP decreases. The radon emission also varies with the seasonal variation in temperature and AP, which is high in summer and low in winter. On a daily timescale, the radon varies in a bimodal manner. Therefore, the net amount of radon emitted from the soil is positively correlated with the amplitude of the AP fluctuation, temperature, soil porosity, and thickness of the vadose zone. The atmospheric pumping is the main driving force responsible for the radon emission. However, the surface closure, landform, cracks, faults, grain size, pore structure, soil adsorption, basal uranium/radium, salts, wind, lunar cycle, latitude and altitude have important effects on the number of radon emission. As such, it provides a scientific basis for the effective utilization of radon and prevention of its emission from soil.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Solo , Radônio/análise , Estações do Ano , Temperatura , Vento , Solo , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Ar/análise
8.
Isotopes Environ Health Stud ; 60(2): 213-225, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372986

RESUMO

Terrestrial gamma radiation is one of the major outdoor radiation exposures to the general public that varies substantially based on the type and geological properties of the soil. The objective of this study is to evaluate the naturally occurring radioactive materials (NORMs) distribution and assess the hazard parameters in the riverbank soil within various industrial zones in the densely populated Dhaka and Chattogram cities of Bangladesh. The mean activities of 226Ra (37 ± 3), 232Th (58 ± 4), and 40K (1129 ± 18) Bqkg-1 in the assessed soil samples were found to be slightly higher than the world average values 32, 35, and 420 Bqkg-1, respectively. The mean radium equivalent activity (207.49 Bqkg-1) and the external and internal hazard indices were within the recommended limits of 370 Bqkg-1 and <1, respectively. The mean absorbed dose rate (99.47 nGyhr-1), annual effective dose (0.12 mSva-1), ELCR (4.27 × 10-4), and gamma level index (1.58) exceeded the world average values 59 nGyhr-1, 0.07 mSva-1, 2.9 × 10-4, and 1 respectively. However, the studied areas are safe from a radiological viewpoint with no radiation health hazard to the people. The results of this study can be utilized to produce factual baseline data for future studies.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Humanos , Poluentes Radioativos do Solo/análise , Monitoramento de Radiação/métodos , Tório/análise , Bangladesh , Rádio (Elemento)/análise , Solo , Radioisótopos de Potássio/análise , Espectrometria gama
9.
Environ Sci Process Impacts ; 26(3): 555-581, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38305448

RESUMO

To study the geogenic processes of naturally occurring radioactive materials' (NORMs') distribution, a transboundary Himalayan river (Punarbhaba) is chosen due to its trivial anthropogenic impacts. In explaining the genesis of radionuclides, transition elements (Sc, Ti, V, and Fe), rare-earth-elements (REEs: La, Eu, Ce, Yb, Sm, and Lu), Ta, Hf, Th, and U were analysed in 30 riverbed sediments collected from the Bangladeshi portion of the river. Elemental abundances and NORMs' activity were measured by neutron activation analysis and HPGe-gamma-spectrometry, respectively. Averagen=30 radioactivity concentrations of 226Ra (68.4 Bq kg-1), 232Th (85.7 Bq kg-1), and 40K (918 Bq kg-1) were 2.0-2.3-fold higher, which show elevated results compared to the corresponding world mean values. Additionally, mean-REE abundances were 1.02-1.38-times higher than those of crustal origin. Elevated (relative to earth-crust) ratios of Th/U (=3.95 ± 1.84) and 232Th/40K and statistical demonstrations invoke Th-dominant heavy minerals, indicating the role of kaolinite clay mineral abundance/granitic presence. However, Th/Yb, La/V, Hf/Sc, and Th/Sc ratios reveal the presence of felsic abundances, hydrodynamic sorting, and recycling of sedimentary minerals. Geo-environmental indices demonstrated the enrichment of chemical elements in heavy minerals, whereas radiological indices presented ionizing radiation concerns, e.g., the average absorbed-gamma-dose rate (123.1 nGy h-1) was 2.24-fold higher compared to the threshold value which might cause chronic health impacts depending on the degree of exposure. The mean excess lifetime cancer risk value for carcinogen exposure was 5.29 × 10-4 S v-1, which is ∼2-times greater than the suggested threshold. Therefore, plausible extraction of heavy minerals and using residues as building materials can alleviate the two-reconciling problems: (1) radiological risk management and (2) fluvial navigability.


Assuntos
Metais Terras Raras , Monitoramento de Radiação , Radioatividade , Poluentes Radioativos do Solo , Metais Terras Raras/análise , Radioisótopos/análise , Minerais/análise , Medição de Risco , Poluentes Radioativos do Solo/análise
10.
Sci Rep ; 14(1): 3776, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355647

RESUMO

This work is mainly concerned with the effect of anthropogenic activities and natural radioactivity due to the presence of highly radioactive black sand spots, factory construction, and shipping, in addition to other activities like agriculture on human beings. Forty samples were collected along Baltim-El Burullus coastal plain to detect the effect of these problems and determine the suggested solutions. The black sand of the Baltim-El Burullus coastal plain exhibits a considerable amount of economically heavy minerals, their ratio relative to the bulk composition in the investigated samples ranges from 3.18 to 10.5% with an average of 5.45%. The most important of them are magnetite, ilmenite, rutile, leucoxene, garnet, zircon and monazite. The existence of some radioactive-bearing accessory mineral deposits like zircon and monazite led to measuring the naturally occurring radionuclides 226Ra, 232Th and 40K to evaluate the excess lifetime cancer risk (ELCR). The results showed that these concentrations are 19.1 ± 9.73, 14.7 ± 9.53 and 211 ± 71.34 Bq kg-1 were lower than the corresponding reported worldwide average of 35, 45, and 412 Bq kg-1 for each radionuclide (226Ra, 232Th, and 40 K). The gamma hazard indices such as absorbed dose rate (Dair), the annual effective dose (AED), and excess lifetime cancer risk (ELCR) factor were computed in the investigated sediments and all the results were found (Dair = 26.4 nGy h-1, AED = 0.03 mSv year-1, ELCR = 0.0001) to be lower than the values suggested by the United Nations Scientific Committee on the effect of Atomic Research (59 nGy h-1, 0.07 mSv year-1 and 0.0029 for Dair, AED and ELCR, respectively). The study suggests that the black sand is safe to use in various infrastructure applications at Baltim-El Burullus coastal plain. The levels of radioactivity are not high enough to pose a risk to human health.


Assuntos
Metais Terras Raras , Neoplasias , Monitoramento de Radiação , Silicatos , Poluentes Radioativos do Solo , Zircônio , Humanos , Monitoramento de Radiação/métodos , Rios , Areia , Egito , Poluentes Radioativos do Solo/análise , Radioisótopos/análise , Minerais/análise
11.
Environ Geochem Health ; 46(2): 66, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329628

RESUMO

The radiation arising from naturally occurring radioactive materials (NORMs) is the foremost contributor to the collective dose received by the global population. The present study aims to measure the natural background radiation level and the associated gamma radiation dose in air in the Beldih apatite mine region of Purulia district, India. This study is primarily focused on the determination of 238U, 232Th and 40K activities in the sub-surface soil of the study area. The measurements were carried out using a High Purity Germanium (HPGe) detector-based gamma-ray spectrometer with a relative efficiency of 80%. To achieve uniformity in exposure estimations, radium equivalent activity has been calculated. Additionally, the internal hazard index, external hazard index, radioactivity level index and gamma dose rates have been evaluated to estimate the radiation hazard levels in the study area. The comparison of obtained concentrations and hazard indices with global data (UNSCEAR. (2008). Sources, effects and risks of ionizing radiation. United nations scientific committee on the effects of atomic radiation (report to the general assembly, with Annexes).) suggests that this region lies in a relatively high background radiation zone.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Tório/análise , Radioisótopos de Potássio/análise , Solo , Poluentes Radioativos do Solo/análise , Rádio (Elemento)/análise
12.
Isotopes Environ Health Stud ; 60(2): 191-212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38258837

RESUMO

Argentina is a Latin American country which encounters soil degradation problems. The most productive regions have implemented conservative land practices (no-till). However, agricultural frontier has been displaced to marginal lands with arid and semiarid climates, with the consequent disappearance in many areas of native forest and land degradation. In this work, the fallout of gamma-emitting radionuclides, 137Cs and 7Be, was jointly used to assess changes in soil erosion in a recently converted semiarid ecosystem into agricultural land. 137Cs was utilized to estimate the erosion over the past 60 years, whereas 7Be was employed to estimate the erosion after the conversion of the area to cultivated land and soil tillage. For 137Cs the Proportional Model (PM), the Mass Balance Model II (MBMII) and the MODERN model were used, for 7Be the Profile Distribution Model (PDM) and the MODERN model were used. 137Cs indicates mean erosional rates of 8.2, 10.5 and 6.5 Mg ha-1 a-1, using MBMII, PM and MODERN, respectively, and that a soil layer between 0.5 and 0.8 mm was annually lost by erosion. By applying a 7Be tracer, we measured erosion rates of 2.4 and 3.3 Mg ha-1 (with PDM and Modern, respectively), indicating the loss of the upper 0.2 mm of soil. This erosion can be attributed to a few heavy rainfalls that occurred within the past 90 days. The results suggest that current land management practices have led to an increase in soil erosion. This could be attributed to the fact that the soil remains bare after crop harvest, which may compromise its conservation and future productivity.


Assuntos
Radioisótopos de Césio , Erosão do Solo , Poluentes Radioativos do Solo , Ecossistema , Argentina , Poluentes Radioativos do Solo/análise , Agricultura/métodos , Solo , Conservação dos Recursos Naturais
13.
Radiat Prot Dosimetry ; 200(4): 387-395, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38186062

RESUMO

Human beings are constantly exposed to the radiations coming from the environment. This work assesses the radiological hazards of natural radioactivity in soil samples taken at four locations around the phosphate area in south Tunisia. Concentrations of primordial radionuclides were measured by gamma spectrometer using an HPGe detector. The overall mean values of 40K, 226Ra and 232Th concentrations were 264, 27 and 13 Bq kg-1, respectively. From the radioactivity measurements, radiation hazard indices specified by the United Nation Scientific Committee on the Effect of Atomic Radiation such as radium equivalent activity (Raeq), absorbed dose rates ($ {\dot{\text D}} $) and annual effective dose (AED) to the population for outdoor environment were determined. The mean values for the abovementioned parameters were 64 Bq kg-1, 33 nGy h-1 and 40 µSv y-1, respectively.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Humanos , Doses de Radiação , Tório/análise , Rádio (Elemento)/análise , Radioisótopos de Potássio/análise , Solo , Fosfatos , Tunísia , Poluentes Radioativos do Solo/análise
14.
Radiat Prot Dosimetry ; 200(4): 403-408, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38196003

RESUMO

This work aimed to support Albania's food safety monitoring regime. In this context, the natural and artificial radioactivity was measured in 20 samples of dried fruits collected randomly in different markets of Tirana. The activity concentration of 40K, 226Ra, 232Th and 137Cs was determined by using the high-purity germanium detector. The maximum values of activity concentration in dried fruits were calculated as 517 ± 22 Bq kg-1 for 40K, 11.10 ± 0.93 Bq kg-1 for 226Ra, 4.38 ± 0.26 Bq kg-1 for 232Th and 0.83 ± 0.14 Bq kg-1 for 137Cs. The average values of activity concentration of 40K and 226Ra were 269and 6.05 Bq kg-1 and the average effective dose to individuals from the intake of the dried fruits was 44 µSv y-1. All average values in this study were lower than recommended values by reports United Nations Scientific Committee on the Effect of Atomic Radiation, World Health Organization and International Commission on Radiological Protection for all age groups. Therefore, all dried fruit samples in this study are safe for consumption with acceptable radiological risk and none of them pose any significant radiological impact. The obtained data in this paper and information for levels of radioactivity and ingestion absorbed dose from dried fruits can be used to be the basic data for future comparative analysis of the other studies.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Humanos , Frutas/química , Radioisótopos de Césio/análise , Radioisótopos de Potássio/análise , Rádio (Elemento)/análise , Tório/análise , Poluentes Radioativos do Solo/análise , Albânia
15.
Environ Sci Pollut Res Int ; 31(5): 8254-8273, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38175520

RESUMO

Naturally occurring radioactive materials (NORMs: 232Th, 226Ra, 40K) can reach our respiratory system by breathing of road dust which can cause severe health risks. Targeting the pioneering consideration of health risks from the NORMs in road dust, this work reveals the radioactivity abundances of NORMs in road dust from a megacity (Dhaka) of a developing country (Bangladesh). Bulk chemical compositions of U, Th, and K obtained from neutron activation analysis were converted to the equivalent radioactivities. Radioactivity concentrations of 226Ra, 232Th, and 40K in road dust ranged from 60-106, 110-159, and 488-709 Bq kg-1 with an average of 84.4 ± 13.1, 126 ± 11, and 549 ± 48 Bq kg-1, respectively. Estimated 226Ra, 232Th, and 40K radioactivities were, respectively, 1.7-3.0-, 3.7-5.3-, and 1.2-1.8-folds greater than the affiliated world average values. Mechanistic pathway of NORMs' enrichment and fractionation relative to the major origin (pedosphere) were evaluated concerning the water logging, relative solubility-controlled leaching and translocation, climatic conditions, and aerodynamic fractionations (dry and wet atmospheric depositions). Computation of customary radiological risk indices invokes health risks. Noticing the ingress of NOMR-holding dust into the human respiratory system along with the associated ionizing radiations, the computed radiological indices represent only the least probable health hazards. Nevertheless, in real situations, α-particles from the radioactive decay products of 232Th and 238U can create acute radiation damages of respiratory system. Policymakers should emphasize on limiting the dust particle evolution, and public awareness is required to alleviate the health risks.


Assuntos
Monitoramento de Radiação , Radioatividade , Poluentes Radioativos do Solo , Humanos , Poeira/análise , Bangladesh , Poluentes Radioativos do Solo/análise , Tório/análise
16.
J Environ Radioact ; 273: 107385, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244324

RESUMO

The radiocesium (137Cs) activity concentration in stemflow, which is an element of the 137Cs cycle in the forest, is determined by the supply of 137Cs from the outer bark and leaves. Long-term monitoring data of deciduous broad-leaved trees since the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident have shown the 137Cs activity concentration in the outer bark decreasing exponentially, while that in the leaves has remained nearly constant. Therefore, it is expected that the contribution of the outer bark to 137Cs in stemflow eventually becomes smaller than that of leaves over time. We hypothesized that as of 2022-2023 (i.e., more than 10 years after the FDNPP accident), the main source of 137Cs in the stemflow of deciduous broad-leaved trees is mainly leaching from leaves. We tested this hypothesis by conducting two surveys in the autumn of 2022 (September-October) and early summer of 2023 (May-June) in Kawauchi Village, Fukushima Prefecture. Samples consisted of stemflow, leaves, and outer bark from a total of 10 deciduous broad-leaved trees (three konara oaks, three mizunara oaks, two Japanese chestnuts, and two cherry blossoms). Our statistical analyses (correlation, linear and multilinear regression analyses) showed that the 137Cs activity concentrations in stemflow were significantly positively correlated to those in leaves, with no positive correlation detected with the outer bark, suggesting that at the time of the survey, the 137Cs activity concentration in stemflow was mainly influenced by the 137Cs activity concentration in leaves. In addition, we propose a method for estimating the stemflow 137Cs activity concentration in konara oak using data from leaves. Although the method's prediction accuracy is low from 2011 to 2013, it is able to estimate the stemflow 137Cs activity concentration in konara oak. Thus, it can help determine one of the model parameters of 137Cs dynamics within deciduous broad-leaved forests.


Assuntos
Acidente Nuclear de Fukushima , Quercus , Monitoramento de Radiação , Poluentes Radioativos do Solo , Árvores , Projetos Piloto , Casca de Planta/química , Monitoramento de Radiação/métodos , Florestas , Poluentes Radioativos do Solo/análise , Radioisótopos de Césio/análise , Japão
17.
J Environ Radioact ; 273: 107382, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266319

RESUMO

Advances in the development of gamma-ray spectrometers have resulted in devices that are ideal for use in conjunction with the increasingly reliable systems of autonomously flying uncrewed aerial vehicles (UAVs) that have recently become available on the market. Airborne gamma-ray spectrometry (GRS) measurements have many different applications. Here, the technique is applied to a former uranium mining and processing site, which is characterized by relatively low specific activities and, hence, low count rates, requiring relatively large detectors and correspondingly big size UAVs. The future acceptance of the use of such UAV-based GRS systems for radionuclide mapping depends on their ability to measure absolute specific activities of natural radionuclides such as U-238 in near-surface soil that are consistent with the results of established and proven ground-based systems. To determine absolute specific activities on the ground, the gamma radiation data from airborne detectors must be corrected for attenuation caused by the flight altitude above ground. In recent years, mathematical procedures for altitude correction have been developed, that are specifically tailored to the working range of several tens of meters typical for UAVs. However, very limited experimental validation of these theoretical approaches is available. A very large dataset consisting of about 3000 UAV-based and 19,000 backpack-based measurements was collected at a low-grade uranium ore dump in Yangiabad, Uzbekistan. We applied different geostatistical interpolation methods to compare the data from both survey techniques by upscaling backpack data to airborne data. Compared to backpack systems, UAV-based systems have lower spatial resolution, so measurements average over larger areal units (or in geostatistical terminology: "spatial support"). Taking into account the change in spatial support, we illustrate that (1) the UAV-based measurements show good agreement with the upscaled backpack measurements and that (2) UAV surveys provide good delineation of contrasts of the relatively smooth U-238 specific activity distribution typical for former uranium mining and processing sites. We are able to show that the resolution of UAV-based systems is sufficient to map extended uranium waste facilities.


Assuntos
Monitoramento de Radiação , Poluentes Radioativos do Solo , Urânio , Urânio/análise , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise , Espectrometria gama
18.
J Environ Radioact ; 273: 107390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295586

RESUMO

Removal of litter-associated 137Cs from the forest floor (litter removal) can reduce the 137Cs uptake by plants; however, the proposed effective period for litter removal was 1-2 years after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. This is because the 137Cs in forest soil migrates rapidly from the litter to surface mineral soil layers in Japanese forests, and thus the effectiveness of litter removal will quickly become limited. However, it is unknown whether this approach can be applied to forests whose vertical migration of 137Cs in the forest soil is relatively slow. Herein, we compared the 137Cs activity concentration in the inner bark of the Japanese cedar (Cryptomeria japonica) between litter removal (conducted in September and October 2016, 5 years after the accident) and in control areas in Kawauchi Village, Fukushima Prefecture, where the vertical migration of 137Cs was relatively slow from the litter to surface mineral soil layers. Air dose rates (ambient dose equivalent) in the litter removal area were significantly lower than those in the control area in 2022, and the 137Cs inventory in the forest soil in litter removal area also tended to be lower than that in the control area. In Japanese cedars with similar levels of outer bark contamination, the 137Cs activity concentration in the inner bark in the litter removal area was significantly lower than that in the control area, and consistent trends were also found when comparing the 137Cs activity concentration in the leaves of Stephanandra incisa and Wisteria floribunda obtained from the same forest. Thus, the litter removal 5 years after the FDNPP accident may have reduced the 137Cs uptake in Japanese cedar in an evergreen coniferous forest where the vertical migration of 137Cs is relatively slow in the forest soil.


Assuntos
Cryptomeria , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Poluentes Radioativos do Solo/análise , Florestas , Radioisótopos de Césio/análise , Solo , Minerais , Japão
19.
J Environ Manage ; 353: 120207, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281428

RESUMO

The release of uranium from uranium tailings into the aqueous environment is a complex process controlled by a series of interacting geochemical reactions. In this paper, uranium tailings from a uranium tailings pond in southern China were collected at different depths by means of borehole sampling and mixed to analyze the fugacity state of U. Static leaching experiments of U at different pH, oxidant concentration and solid-to-liquid ratios and dynamic leaching experiments of U at different pH were carried out, and the adsorption and desorption behaviour of U in five representative stratigraphic media were investigated. The results show that U is mainly present in the residue state in uranium tailings, that U release is strong in the lower pH range, that the leached U is mainly in the form of U(VI), mainly from the water-soluble, Fe/Mn oxides and exchangeable fraction of uranium tailings, and that the reduction in U leaching at higher pH is mainly due to the combined effect of precipitation formation and larger particle size of platelets in uranium tailings. Experiments with different oxidant concentrations and solid-liquid ratios showed that the oxygen-enriched state and low solid-liquid ratios were favorable for the leaching of U from uranium tailings. Adsorption and desorption experiments show that U is weakly adsorbed in representative strata, reversibly adsorbed, and that U is highly migratory in groundwater. The present research results have important guiding significance for the management of existing uranium tailings ponds and the control of U migration in groundwater, which is conducive to ensuring the long-term safety, stability and sustainability of uranium mining sites.


Assuntos
Poluentes Radioativos do Solo , Urânio , Poluentes Radioativos da Água , Urânio/análise , Adsorção , Poluentes Radioativos do Solo/análise , Poluentes Radioativos da Água/análise , Água , Oxidantes
20.
Radiat Prot Dosimetry ; 200(5): 429-436, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38221673

RESUMO

This study was conducted to investigate the activity concentrations of 226Ra, 232Th and 40K in the sand samples and the health hazards associated with them utilizing a NaI (Tl) gamma spectrometer. The average activity concentrations of 226Ra, 232Th and 40K were found to be 24.8 ± 10.1, 39.8 ± 16.4 and 531.3 ± 52.8 Bq kg-1, respectively. The calculated radiological hazard parameters, including radium equivalent activity, absorbed gamma dose and effective dose rate, were found to be 122.7 ± 34.0 Bq kg-1, 57.7 ± 14.9 nGy h-1 and 0.3 ± 0.1 mSv y-1, respectively. Notably, these results were observed to be below the recommended thresholds. Other measured hazard indices were also lower than the prescribed values. From a radiological perspective, the present study concludes that the sand samples do not pose any threat to human health when utilized as a building material.


Assuntos
Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Poluentes Radioativos do Solo , Humanos , Tório/análise , Radioisótopos de Potássio/análise , Rádio (Elemento)/análise , Areia , Monitoramento de Radiação/métodos , Nepal , Poluentes Radioativos do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...